
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 6: I/O Systems

12.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 12: I/O Systems

▪ Overview

▪ I/O Hardware

▪ Application I/O Interface

▪ Kernel I/O Subsystem

▪ Transforming I/O Requests to Hardware Operations

▪ STREAMS

▪ Performance

12.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Explore the structure of an operating system’s I/O subsystem

▪ Discuss the principles and complexities of I/O hardware

▪ Explain the performance aspects of I/O hardware and software

12.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Overview

▪ I/O management is a major component of operating system design and

operation

• Important aspect of computer operation

• I/O devices vary greatly

• Various methods to control them

• Performance management

• New types of devices frequent

▪ Ports, busses, device controllers connect to various devices

▪ Device drivers encapsulate device details

• Present uniform device-access interface to I/O subsystem

12.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

A Typical PC Bus Structure

12.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Hardware (Cont.)

▪ Devices have addresses, used by

• Direct I/O instructions

• Memory-mapped I/O

 Device data and command registers mapped to

processor address space

 Especially for large address spaces (graphics)

12.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Polling

▪ For each byte of I/O

1. Read busy bit from status register until 0

2. Host sets read or write bit and if write copies data into data-out

register

3. Host sets command-ready bit

4. Controller sets busy bit, executes transfer

5. Controller clears busy bit, error bit, command-ready bit when

transfer done

▪ Step 1 is busy-wait cycle to wait for I/O from device

• Reasonable if device is fast

• But inefficient if device slow

• CPU switches to other tasks?

 But if miss a cycle data overwritten / lost

12.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupts

▪ Polling can happen in 3 instruction cycles

• Read status, logical-and to extract status bit, branch if not zero

• How to be more efficient if non-zero infrequently?

▪ CPU Interrupt-request line triggered by I/O device

• Checked by processor after each instruction

▪ Interrupt handler receives interrupts

• Maskable(يمكن تجاهلها) to ignore or delay some interrupts

▪ Interrupt vector to dispatch interrupt to correct handler

• Context switch at start and end

• Based on priority

• Some nonmaskable(تجاهلهالايمكن)

• Interrupt chaining if more than one device at same interrupt

number

12.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupt-Driven I/O Cycle

12.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Latency

▪ Stressing interrupt management because even single-user systems

manage hundreds or interrupts per second and servers hundreds of

thousands

▪ For example, a quiet macOS desktop generated 23,000 interrupts

over 10 seconds

12.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Direct Memory Access

▪ Used to avoid programmed I/O (one byte at a time) for large data

movement

▪ Requires DMA controller

▪ Bypasses CPU to transfer data directly between I/O device and

memory

▪ OS writes DMA command block into memory

• Source and destination addresses

• Read or write mode

• Count of bytes

• Writes location of command block to DMA controller

• Bus mastering of DMA controller – grabs bus from CPU

 Cycle stealing from CPU but still much more efficient

• When done, interrupts to signal completion

▪ Version that is aware of virtual addresses can be even more efficient -

DVMA

12.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Six Step Process to Perform DMA Transfer

12.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Characteristics of I/O Devices

12.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Block and Character Devices

▪ Block devices include disk drives

• Commands include read, write, seek

• Raw I/O, direct I/O, or file-system access

• Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via

demand paging

• DMA

▪ Character devices include keyboards, mice, serial ports

• Commands include get(), put()

• Libraries layered on top allow line editing

12.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Network Devices

▪ Varying enough from block and character to have own

interface

▪ Linux, Unix, Windows and many others include socket

interface

• Separates network protocol from network operation

• Includes select() functionality

▪ Approaches vary widely (pipes, FIFOs, streams, queues,

mailboxes)

12.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Clocks and Timers

▪ Provide current time, elapsed time, timer

▪ Normal resolution about 1/60 second

▪ Some systems provide higher-resolution timers

▪ Programmable interval timer used for timings, periodic

interrupts

▪ ioctl() (on UNIX) covers odd aspects of I/O such as

clocks and timers

12.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Nonblocking and Asynchronous I/O

▪ Blocking - process suspended until I/O completed

• Easy to use and understand

• Insufficient for some needs

▪ Nonblocking - I/O call returns as much as available

• User interface, data copy (buffered I/O)

• Implemented via multi-threading

• Returns quickly with count of bytes read or written

• select() to find if data ready then read() or

write() to transfer

▪ Asynchronous - process runs while I/O executes

• Difficult to use

• I/O subsystem signals process when I/O completed

12.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Error Handling

▪ OS can recover from disk read, device unavailable, transient

write failures

• Retry a read or write, for example

• Some systems more advanced – Solaris FMA, AIX

 Track error frequencies, stop using device with

increasing frequency of retry-able errors

▪ Most return an error number or code when I/O request fails

▪ System error logs hold problem reports

12.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Protection

▪ User process may accidentally or purposefully attempt to

disrupt normal operation via illegal I/O instructions

• All I/O instructions defined to be privileged

• I/O must be performed via system calls

 Memory-mapped and I/O port memory locations must

be protected too

12.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Use of a System Call to Perform I/O

12.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Power Management

▪ Not strictly domain of I/O, but much is I/O related

▪ Computers and devices use electricity, generate heat, frequently

require cooling

▪ OSes can help manage and improve use

• Cloud computing environments move virtual machines

between servers

 Can end up evacuating whole systems and shutting them

down

▪ Mobile computing has power management as first class OS

aspect

12.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel I/O Subsystem Summary

▪ In summary, the I/O subsystem coordinates an extensive collection of

services that are available to applications and to other parts of the

kernel

• Management of the name space for files and devices

• Access control to files and devices

• Operation control (for example, a modem cannot seek())

• File-system space allocation

• Device allocation

• Buffering, caching, and spooling

• I/O scheduling

• Device-status monitoring, error handling, and failure recovery

• Device-driver configuration and initialization

• Power management of I/O devices

▪ The upper levels of the I/O subsystem access devices via the uniform

interface provided by the device drivers

12.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

STREAMS

▪ STREAM – a full-duplex communication channel between a

user-level process and a device in Unix System V and beyond

▪ A STREAM consists of:

• STREAM head interfaces with the user process

• driver end interfaces with the device

• zero or more STREAM modules between them

▪ Each module contains a read queue and a write queue

▪ Message passing is used to communicate between queues

• Flow control option to indicate available or busy

▪ Asynchronous internally, synchronous where user process

communicates with stream head

12.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The STREAMS Structure

12.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Performance

▪ I/O a major factor in system performance:

• Demands CPU to execute device driver, kernel I/O

code

• Context switches due to interrupts

• Data copying

• Network traffic especially stressful

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 6

	Slide 1: Chapter 6: I/O Systems
	Slide 2: Chapter 12: I/O Systems
	Slide 3: Objectives
	Slide 4: Overview
	Slide 5: A Typical PC Bus Structure
	Slide 6: I/O Hardware (Cont.)
	Slide 7: Polling
	Slide 8: Interrupts
	Slide 9: Interrupt-Driven I/O Cycle
	Slide 10: Latency
	Slide 11: Direct Memory Access
	Slide 12: Six Step Process to Perform DMA Transfer
	Slide 13: Characteristics of I/O Devices
	Slide 14: Block and Character Devices
	Slide 15: Network Devices
	Slide 16: Clocks and Timers
	Slide 17: Nonblocking and Asynchronous I/O
	Slide 18: Error Handling
	Slide 19: I/O Protection
	Slide 20: Use of a System Call to Perform I/O
	Slide 21: Power Management
	Slide 22: Kernel I/O Subsystem Summary
	Slide 23: STREAMS
	Slide 24: The STREAMS Structure
	Slide 25: Performance
	Slide 26: End of Chapter 6

